Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei.
نویسندگان
چکیده
Electrical activity is thought to be the primary neural stimulus regulating muscle mass, expression of myogenic regulatory factor genes, and cellular activity within skeletal muscle. However, the relative contribution of neural influences that are activity-dependent and -independent in modulating these characteristics is unclear. Comparisons of denervation (no neural influence) and spinal cord isolation (SI, neural influence with minimal activity) after 3, 14, and 28 days of treatment were used to demonstrate whether there are neural influences on muscle that are activity independent. Furthermore, the effects of these manipulations were compared for a fast ankle extensor (medial gastrocnemius) and a fast ankle flexor (tibialis anterior). The mass of both muscles plateaued at approximately 60% of control 2 wk after SI, whereas both muscles progressively atrophied to <25% of initial mass at this same time point after denervation. A rapid increase in myogenin and, to a lesser extent, MyoD mRNAs and proteins was observed in denervated and SI muscles: at the later time points, these myogenic regulatory factors remained elevated in denervated, but not in SI, muscles. This widespread neural activity-independent influence on MyoD and myogenin expression was observed in myonuclei and satellite cells and was not specific for fast or slow fiber phenotypes. Mitotic activity of satellite and connective tissue cells also was consistently lower in SI than in denervated muscles. These results demonstrate a neural effect independent of electrical activity that 1) helps preserve muscle mass, 2) regulates muscle-specific genes, and 3) potentially spares the satellite cell pool in inactive muscles.
منابع مشابه
Ursolic Acid Improve Skeletal Muscle Hypertrophy by Increasing of PAX7, Myod and Myogenin Expression and Satellite Cells Proliferation in Native Broiler Chickens
Ursolic acid (UA) is known as a naturally occurring triterpene pentacyclic compound in some medicinal herbs including savory that affects the skeletal muscle. In the current study, the effect of UA was evaluated on C2C12 cells and satellite cells (SCs) isolated from native broiler chicks. First in the in vitro experiment, the C2C12 cell line obtained from the Stem Cell Technology Research Cente...
متن کاملCorrelations Between Plasma Sphingosine-1-phosphate (S1P) and Gene Expression of S1P Receptors with Mogenic Regulatory Factors Following Resistance Training
Background: The purpose of present study was to investigate whether Sphingosine 1-phosphate (S1P) levels and its receptors gene expressions are correlated with MyoD and myogenin following resistance training. Materials and Methods: 24 eight-week-old male Wistar rats (190-250 gr) were assigned randomly to a control (N = 12) or training (N = 12) group. Rats climbed a resistance training ladder...
متن کاملHesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers.
Satellite cells, which are skeletal muscle stem cells, divide to provide new myonuclei to growing muscle fibers during postnatal development, and then are maintained in an undifferentiated quiescent state in adult skeletal muscle. This state is considered to be essential for the maintenance of satellite cells, but their molecular regulation is unknown. We show that Hesr1 (Hey1) and Hesr3 (Heyl)...
متن کاملIn vivo expression patterns of MyoD, p21, and Rb proteins in myonuclei and satellite cells of denervated rat skeletal muscle.
MyoD, a myogenic regulatory factor, is rapidly expressed in adult skeletal muscles in response to denervation. However, the function(s) of MyoD expressed in denervated muscle has not been adequately elucidated. In vitro, it directly transactivates cyclin-dependent kinase inhibitor p21 (p21) and retinoblastoma protein (Rb), a downstream target of p21. These factors then act to regulate cell cycl...
متن کاملMyoD, myogenin independent differentiation of primordial myoblasts in mouse somites
The accumulation of two myogenic regulatory proteins, MyoD and myogenin, was investigated by double-immunocytochemistry and correlated with myosin heavy chain expression in different classes of myoblasts in culture and during early myogenesis in vivo. During in vitro differentiation of fetal myoblasts, MyoD-positive cells were detected first, followed by the appearance of cells positive for bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 285 5 شماره
صفحات -
تاریخ انتشار 2003